Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Oncol ; 18(2): 280-290, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727134

RESUMO

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron-based clusters as meta-carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta-carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2-mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7-trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 µm without reversing mitoxantrone resistance, its carborane analogue 5,6,7-trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 µm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta-carborane and three methoxy substituents leads to an enhanced reversal of ABCG2-mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.


Assuntos
Antineoplásicos , Flavanonas , Mitoxantrona , Humanos , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia
2.
ChemMedChem ; 19(2): e202300506, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012078

RESUMO

Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Amidas/farmacologia , Aminas/farmacologia , Linhagem Celular Tumoral
3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004447

RESUMO

The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa, DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480 cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly, co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However, a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition by the carborane derivatives emerges as a possible reason.

4.
ChemMedChem ; 18(11): e202300094, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988057

RESUMO

The role of ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in anti-cancer therapy is often challenging, frequently leading to inefficiency of treatments. Cancer cells exploit efflux transporters, like the breast cancer resistance protein (BCRP, ABCG2), to secrete chemotherapeutic substances. In this study, an N-phenyl-2-carboranylquinazolin-4-amine (8) was designed as inorganic-organic hybrid BCRP inhibitor. In particular, the ABCG2-transporter inhibitor-prominent scaffold N-phenylquinazolin-4-amine was combined with a boron-carbon cluster (carborane) moiety. Introducing a carborane at 2-position of the quinazoline scaffold resulted in an increased inhibitory activity towards human ABCG2 (hABCG2) compared to its recently published regioisomer N-carboranyl-2-phenyl-quinazolin-4-amine. The carboranylquinazoline 8 further showed the ability to reverse hABCG2-mediated drug resistance in MDCKII-hABCG2 cells by lowering the IC50 value of the BCRP-substrate mitoxantrone, similar to the standard reference and strong inhibitor Ko143, without exhibiting intrinsic toxicity in the lower micromolar ranges. These results make compound 8 a promising scaffold for the design of further BCRP inhibitors.


Assuntos
Antineoplásicos , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/farmacologia , Mitoxantrona/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678870

RESUMO

The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells. Therefore, the inhibition of ABCG2 activity during chemotherapy ought to improve the efficacy of the administered anti-cancer agents by reversing MDR or by enhancing the agents' pharmacokinetic properties. Significant efforts have been made to develop novel, powerful, selective, and non-toxic inhibitors of BCRP. However, thus far the clinical relevance of BCRP-selective MDR-reversal has been unsuccessful, due to either adverse drug reactions or significant toxicities in vivo. We here report a facile access towards carboranyl quinazoline-based inhibitors of ABCG2. We determined the influence of different methoxy-substitution patterns on the 2-phenylquinazoline scaffold in combination with the beneficial properties of an incorporated inorganic carborane moiety. A series of eight compounds was synthesized and their inhibitory effect on the ABCG2-mediated Hoechst transport was evaluated. Molecular docking studies were performed to better understand the structure-protein interactions of the novel inhibitors, exhibiting putative binding modes within the inner binding site. Further, the most potent, non-toxic compounds were investigated for their potential to reverse ABCG2-mediated mitoxantrone (MXN) resistance. Of these five evaluated compounds, N-(closo-1,7-dicarbadodecaboran(12)-9-yl)-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-quinazolin-4-amine (DMQCd) exhibited the strongest inhibitory effect towards ABCG2 in the lower nanomolar ranges. Additionally, DMQCd was able to reverse BCRP-mediated MDR, making it a promising candidate for further research on hybrid inorganic-organic compounds.

6.
ChemMedChem ; 17(1): e202100588, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694057

RESUMO

12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency. An emerging approach to enhance metabolic stability of carbon-based pharmaceuticals is the use of metabolically stable, non-toxic boron clusters, such as dicarba-closo-dodecaborane(12)s (carboranes) as phenyl mimetics. Therefore, the unsubstituted phenyl ring of baicalein was replaced by meta-carborane, resulting in borcalein, the carborane analogue of baicalein. This substitution resulted in a decreased inhibitory activity toward 12-lipoxygenase, but led to increased toxicity in melanoma (A375, B16, B16F10) and colon cancer cell lines (SW480, HCT116, CT26CL25) with decreased tumour selectivity in comparison to baicalein. Surprisingly, borcalein displays a different mechanism of cytotoxicity with increased intracellular production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO).


Assuntos
Antineoplásicos/farmacologia , Araquidonato 12-Lipoxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavanonas/síntese química , Flavanonas/química , Humanos , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
PLoS One ; 15(8): e0237163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764792

RESUMO

In bovine mammary glands, the ABCG2 transporter actively secretes xenobiotics into dairy milk. This can have significant implications when cattle are exposed to pesticide residues in feed. Recent studies indicate that the fungicide prochloraz activates the aryl hydrocarbon receptor (AhR) pathway, increasing bovine ABCG2 (bABCG2) gene expression and efflux activity. This could enhance the accumulation of bABCG2 substrates in dairy milk, impacting pesticide risk assessment. We therefore investigated whether 13 commonly used pesticides in Europe are inducers of AhR and bABCG2 activity. MDCKII cells expressing mammary bABCG2 were incubated with pesticides for up to 72 h. To reflect an in vivo situation, applied pesticide concentrations corresponded to the maximum residue levels (MRLs) permitted in bovine fat or muscle. AhR activation was ascertained through CYP1A mRNA expression and enzyme activity, measured by qPCR and 7-ethoxyresorufin-Ο-deethylase (EROD) assay, respectively. Pesticide-mediated increase of bABCG2 efflux activity was assessed using the Hoechst 33342 accumulation assay. For all assays, the known AhR-activating pesticide prochloraz served as a positive control, while the non-activating tolclofos-methyl provided the negative control. At 10-fold MRL concentrations, chlorpyrifos-methyl, diflufenican, ioxynil, rimsulfuron, and tebuconazole significantly increased CYP1A1 mRNA levels, CYP1A activity, and bABCG2 efflux activity compared to the vehicle control. In contrast, dimethoate, dimethomorph, glyphosate, iprodione, methiocarb and thiacloprid had no impact on AhR-mediated CYP1A1 mRNA levels, CYP1A activity or bABCG2 efflux. In conclusion, the MDCKII-bABCG2 cell model proved an appropriate tool for identifying AhR- and bABCG2-inducing pesticides. This provides an in vitro approach that could reduce the number of animals required in pesticide approval studies.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Alternativas aos Testes com Animais/métodos , Fungicidas Industriais/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Testes de Toxicidade Crônica/métodos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/agonistas , Animais , Bovinos , Cães , Alemanha , Lactação/efeitos dos fármacos , Células Madin Darby de Rim Canino , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...